Tetrahedron Letters Vol. 21, pp 3845 - 3848 © Pergamon Press Ltd. 1980. Printed in Great Britain

> A TOTAL SYNTHESIS OF CHELIDONINE Mark Cushman*, T.-C. Choong, Joseph T. Valko, and Mary P. Koleck Department of Medicinal Chemistry and Pharmacognosy School of Pharmacy and Pharmacal Sciences Purdue University, West Lafayette, Indiana 47907

<u>Abstract</u>. Condensation of homophthalic anhydride $\frac{3}{2}$ with the Schiff base $\frac{4}{2}$ is exploited as the key step in a total synthesis of the benzophenanthridine alkaloid (±)-chelidonine ($\frac{8}{2}$).

(+)-Chelidonine (§), a major secondary metabolite of <u>Chelidonium majus</u>¹, is the first benzophenanthridine alkaloid to have had its structure elucidated. Extensive degradative studies led to a correct structure in 1930,² and a B/C cis ring fusion together with an axial hydroxyl group were later proposed to account for the presence of an intramolecular hydrogen bond detected by ir spectroscopy.^{3,4} Contrary to earlier studies,⁵ (+)-chelidonine was recently reassigned the absolute configuration depicted in structure 8 by x-ray analysis of the <u>p</u>-bromobenzoate.⁶ The racemic mixture (diphylline),⁷ as well as either enantiomer,⁸ can be isolated from various plants of the <u>Papaveraceae</u>. A total synthesis of (±)-chelidonine has already been executed.^{9,10} We wish to report a second total synthesis of (±)-chelidonine which is noteworthy because of its brevity and simplicity.

Metalation of the amine 1 with 1.2 equiv of <u>m</u>-BuLi in THF (-78°C, 2 h), followed by addition of excess ethyl chloroformate to the ortho-lithiated intermediate, gave the carbethoxylated benzyl chloride 2 in 45% yield.¹¹ Compound 2 was transformed into the known homophthalic anhydride 3^{12} in 64% yield after displacement of the chloride with cyanide (KCN, DMSO, reflux, 3 h), basic hydrolysis (aq. KOH, reflux, 3 h), and cyclodehydration (AcCl, reflux, 6 h). Condensation of the anhydride 3 with the Schiff base 4 (CH₃CN, reflux, 1 h) afforded a diastereomeric mixture of isoquinolones (67% cis, 33% trans) from which the desired cis isomer 5 ($J_{AB} = 6$ Hz), mp 219-221°C (dec), could be isolated in 62% yield.¹³ A variety of reaction conditions (Table I) did not further improve the ratio of isomers. The desired cis diastereomer 5 is unfortunately the thermodynamically less stable, since on heating in refluxing acetic acid (13 h) it was transformed completely into the unwanted trans isomer ($J_{AB} = 0$ Hz).¹³ Addition of thionyl chloride to a solution of the triethylamine salt of 5 in benzene/CH₂Cl₂ (0°C, 2 h) gave a crude acid chloride which without purification was treated immediately with excess diazomethane in Et₂0 (-10°C, 20 min), affording a 50% yield of the diazoketone 6.¹⁴ Compound 6 on treatment with CF₃COOH (0°C, 1

~

min) gave a mixture of products from which the cyclized ketone $\frac{7}{J_{AB}} = 4$ Hz), mp 253°C (dec), could be isolated by fractional crystallization in 19% yield.¹⁵ Lithium aluminum hydride reduction of $\frac{7}{2}$ (THF, reflux, 17 h) provided (±)-chelidonine, mp 217-218°C, in 93% yield. The 360 MHz nmm spectra and in spectra (KBr) of the synthetic compound and authentic (+)-chelidonine¹⁶ are identical.

Acknowledgments. This work was supported by Grant 1 RO1 CA19204, awarded by the National Cancer Institute, DHEW. We thank John Kozlowski for the 360 MHz nmr spectra of our synthetic (\pm) -chelidonine and authentic (+)-chelidonine.

Solvent	Temp (time) ^D	<u>% cis^C</u>	<u>% trans</u>
CH ₃ CN	82°C (1 h)	67	33
CH ₃ CN + Et ₃ N (9:1)	23°C (40 min)	58	42
CH3NO2	23°C (30 min)	38	62
<u>t</u> -BuOH	23°C (27 min)	23	77
THF	23°C (65 min)	20	8 0
Neat ^d	23°C (1 min)	20	80
CH ₃ CN	-22°C (57 min)	20	80
CH ₂ C1 ₂	23°C (15 min)	17	83
CH2C12	-78°C (72 min)	11	89
стсн ₂ сн ₂ ст	83°C (103 min)	11	89
ØCH ₂ CN	183°C (59 min)	8	92

Table I. The Effect of Reaction Conditions on the Stereochemical Outcome of the Condensation of 3,4-Methylenedioxyhomophthalic Anhydride (3) and Piperonylidenemethylamine (4).^a

^aThe combined yields of the diastereomers are essentially quantitative. ^bReaction times include slow additions of the reagents. ^CEstimated by nmr integrations. ^dThe neat reaction was performed by shaking the two solids in a wiggle-bug ball mill.

References and Notes

- 1. First isolation: J.M. Probst, Ann. Pharm., 1839, 29, 113.
- F. von Bruchhausen and H.W. Bersch, <u>Chem. Ber.</u>, 1930, <u>63</u>, 2520; E. Späth and F. Kuffner, <u>Chem. Ber.</u>, 1931, <u>64</u>, 370.
- 3. H.-W. Bersch, Arch. Pharm. (Weinheim), 1958, 291, 491.
- The nmr spectrum of chelidonine is also consistent with structure 8: E. Seoane, <u>An</u>. <u>Real. Soc. Espan. Fis. Quim., Ser. B., 1965, 61</u>, 755; C.-Y. Chen and D.B. MacLean, <u>Can. J. Chem., 1967, 45</u>, 3001; S. Naruto, S. Arakawa, and H. Kaneko, <u>Tetrahedron</u> <u>Lett.</u>, 1968, 1705.
- G. Snatzke, J. Hrbek, Jr., L. Hruban, A. Horeau, and F. Šantavý, <u>Tetrahedron</u>, 1970, <u>26</u>, 5013.
- N. Takao, N. Bessho, M. Kamigauchi, K. Iwasa, K. Tomita, T. Fujiwara, and S. Fugii, <u>Tetrahedron Lett.</u>, <u>1979</u>, 495.
- J. Slavik, L. Slaviková, and J. Brabenek, <u>Collect. Czech</u>. <u>Chem</u>. <u>Commun</u>., 1965, <u>30</u>, 3697; L. Slaviková, <u>Ibid</u>., 1968, <u>33</u>, 635; J.O. Schotterbeck and H.C. Watkins, <u>Ber</u>., 1902, <u>35</u>, 7.
- J. Slavik and L. Slaviková, <u>Collect</u>. <u>Czech</u>. <u>Chem</u>. <u>Commun</u>., <u>1957</u>, <u>22</u>, 279; J. Slavik and L. Slaviková, <u>Ibid</u>., <u>1959</u>, <u>24</u>, 3141.
- 9. W. Oppolzer and K. Keller, <u>J. Am. Chem. Soc.</u>, 1971, <u>93</u>, 3836.
- A total synthesis of the related benzophenanthridine alkaloid (±)-homochelidonine has also been reported: I. Ninomiya, O. Yamamoto, and T. Naito, <u>Heterocycles</u>, <u>1977</u>, <u>7</u>, 137.
- 11. R.T. Dean and H. Rapoport, J. Org. Chem., 1978, 43, 2115.
- 12. M. Shamma and H.H. Tomlinson, J. Org. Chem., 1978, 43, 2852.
- 13. M. Cushman, J. Gentry, and F.W. Dekow, <u>J. Org. Chem.</u>, <u>1977</u>, <u>42</u>, 1111.
- It is necessary to use the triethylamine salt of 5 in order to avoid formation of an undesired indeno[1,2-c]isoquinoline: M. Cushman and L. Cheng, <u>J. Org. Chem.</u>, <u>1978</u>, <u>43</u>, 3781.
- 15. D.J. Beames and L.N. Mander, <u>Aust. J. Chem.</u>, <u>1974</u>, <u>27</u>, 1257.
- 16. Obtained from Pfaltz and Bauer, Inc.

(Received in USA 16 June 1980)

3848